Mathematical function
A=M=0, K=C=1, B=3, ν=0.5, Q=0.5
Effect of varying parameter A. All other parameters are 1.
Effect of varying parameter B. A = 0, all other parameters are 1.
Effect of varying parameter C. A = 0, all other parameters are 1.
Effect of varying parameter K. A = 0, all other parameters are 1.
Effect of varying parameter Q. A = 0, all other parameters are 1.
Effect of varying parameter
ν
{\displaystyle \nu }
. A = 0, all other parameters are 1.
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards , who proposed the general form for the family of models in 1959.
Richards's curve has the following form:
Y
(
t
)
=
A
+
K
−
A
(
C
+
Q
e
−
B
t
)
1
/
ν
{\displaystyle Y(t)=A+{K-A \over (C+Qe^{-Bt})^{1/\nu }}}
where
Y
{\displaystyle Y}
= weight, height, size etc., and
t
{\displaystyle t}
= time. It has six parameters:
A
{\displaystyle A}
: the left horizontal asymptote;
K
{\displaystyle K}
: the right horizontal asymptote when
C
=
1
{\displaystyle C=1}
. If
A
=
0
{\displaystyle A=0}
and
C
=
1
{\displaystyle C=1}
then
K
{\displaystyle K}
is called the carrying capacity ;
B
{\displaystyle B}
: the growth rate;
ν
>
0
{\displaystyle \nu >0}
: affects near which asymptote maximum growth occurs.
Q
{\displaystyle Q}
: is related to the value
Y
(
0
)
{\displaystyle Y(0)}
C
{\displaystyle C}
: typically takes a value of 1. Otherwise, the upper asymptote is
A
+
K
−
A
C
1
/
ν
{\displaystyle A+{K-A \over C^{\,1/\nu }}}
The equation can also be written:
Y
(
t
)
=
A
+
K
−
A
(
C
+
e
−
B
(
t
−
M
)
)
1
/
ν
{\displaystyle Y(t)=A+{K-A \over (C+e^{-B(t-M)})^{1/\nu }}}
where
M
{\displaystyle M}
can be thought of as a starting time, at which
Y
(
M
)
=
A
+
K
−
A
(
C
+
1
)
1
/
ν
{\displaystyle Y(M)=A+{K-A \over (C+1)^{1/\nu }}}
. Including both
Q
{\displaystyle Q}
and
M
{\displaystyle M}
can be convenient:
Y
(
t
)
=
A
+
K
−
A
(
C
+
Q
e
−
B
(
t
−
M
)
)
1
/
ν
{\displaystyle Y(t)=A+{K-A \over (C+Qe^{-B(t-M)})^{1/\nu }}}
this representation simplifies the setting of both a starting time and the value of
Y
{\displaystyle Y}
at that time.
The logistic function , with maximum growth rate at time
M
{\displaystyle M}
, is the case where
Q
=
ν
=
1
{\displaystyle Q=\nu =1}
.
Generalised logistic differential equation [ edit ]
A particular case of the generalised logistic function is:
Y
(
t
)
=
K
(
1
+
Q
e
−
α
ν
(
t
−
t
0
)
)
1
/
ν
{\displaystyle Y(t)={K \over (1+Qe^{-\alpha \nu (t-t_{0})})^{1/\nu }}}
which is the solution of the Richards's differential equation (RDE):
Y
′
(
t
)
=
α
(
1
−
(
Y
K
)
ν
)
Y
{\displaystyle Y^{\prime }(t)=\alpha \left(1-\left({\frac {Y}{K}}\right)^{\nu }\right)Y}
with initial condition
Y
(
t
0
)
=
Y
0
{\displaystyle Y(t_{0})=Y_{0}}
where
Q
=
−
1
+
(
K
Y
0
)
ν
{\displaystyle Q=-1+\left({\frac {K}{Y_{0}}}\right)^{\nu }}
provided that
ν
>
0
{\displaystyle \nu >0}
and
α
>
0
{\displaystyle \alpha >0}
The classical logistic differential equation is a particular case of the above equation, with
ν
=
1
{\displaystyle \nu =1}
, whereas the Gompertz curve can be recovered in the limit
ν
→
0
+
{\displaystyle \nu \rightarrow 0^{+}}
provided that:
α
=
O
(
1
ν
)
{\displaystyle \alpha =O\left({\frac {1}{\nu }}\right)}
In fact, for small
ν
{\displaystyle \nu }
it is
Y
′
(
t
)
=
Y
r
1
−
exp
(
ν
ln
(
Y
K
)
)
ν
≈
r
Y
ln
(
Y
K
)
{\displaystyle Y^{\prime }(t)=Yr{\frac {1-\exp \left(\nu \ln \left({\frac {Y}{K}}\right)\right)}{\nu }}\approx rY\ln \left({\frac {Y}{K}}\right)}
The RDE models many growth phenomena, arising in fields such as oncology and epidemiology.
Gradient of generalized logistic function [ edit ]
When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point
t
{\displaystyle t}
(see[ 1] ). For the case where
C
=
1
{\displaystyle C=1}
,
∂
Y
∂
A
=
1
−
(
1
+
Q
e
−
B
(
t
−
M
)
)
−
1
/
ν
∂
Y
∂
K
=
(
1
+
Q
e
−
B
(
t
−
M
)
)
−
1
/
ν
∂
Y
∂
B
=
(
K
−
A
)
(
t
−
M
)
Q
e
−
B
(
t
−
M
)
ν
(
1
+
Q
e
−
B
(
t
−
M
)
)
1
ν
+
1
∂
Y
∂
ν
=
(
K
−
A
)
ln
(
1
+
Q
e
−
B
(
t
−
M
)
)
ν
2
(
1
+
Q
e
−
B
(
t
−
M
)
)
1
ν
∂
Y
∂
Q
=
−
(
K
−
A
)
e
−
B
(
t
−
M
)
ν
(
1
+
Q
e
−
B
(
t
−
M
)
)
1
ν
+
1
∂
Y
∂
M
=
−
(
K
−
A
)
Q
B
e
−
B
(
t
−
M
)
ν
(
1
+
Q
e
−
B
(
t
−
M
)
)
1
ν
+
1
{\displaystyle {\begin{aligned}\\{\frac {\partial Y}{\partial A}}&=1-(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial K}}&=(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial B}}&={\frac {(K-A)(t-M)Qe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial \nu }}&={\frac {(K-A)\ln(1+Qe^{-B(t-M)})}{\nu ^{2}(1+Qe^{-B(t-M)})^{\frac {1}{\nu }}}}\\\\{\frac {\partial Y}{\partial Q}}&=-{\frac {(K-A)e^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial M}}&=-{\frac {(K-A)QBe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\end{aligned}}}
The following functions are specific cases of Richards's curves:
Richards, F. J. (1959). "A Flexible Growth Function for Empirical Use". Journal of Experimental Botany . 10 (2): 290– 300. doi :10.1093/jxb/10.2.290 .
Pella, J. S.; Tomlinson, P. K. (1969). "A Generalised Stock-Production Model". Bull. Inter-Am. Trop. Tuna Comm . 13 : 421– 496.
Lei, Y. C.; Zhang, S. Y. (2004). "Features and Partial Derivatives of Bertalanffy–Richards Growth Model in Forestry". Nonlinear Analysis: Modelling and Control . 9 (1): 65– 73. doi :10.15388/NA.2004.9.1.15171 .